Code: 19EC4702A

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2022

GLOBAL POSITIONING SYSTEMS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1. a)	List out the GPS satellite generations.	L1	CO1
1. b)	Write the equation for GPS satellite transmitted	L1	CO2
	signal and mention all the parameters of the		
	equation. What are the frequencies of GPS		
	signals?		
1. c)	What is User Equivalent Range Error (UERE)?	L1	CO3
	Give its significance.		
1. d)	Name the existing GPS data formats.		CO4
1. e)	Extend the application of GPS for open pit-	L2	CO5
	mining.		

PART – B

			BL	СО	Max. Marks	
		UNIT-I				
2	a)	Describe the GPS Satellite constellation	L2	CO1	6 M	
	<i>a)</i>	with a neat diagram.				
	b)	Explain the basic principle of operation	L2	CO1	6 M	
		for GPS and its architecture.				
		OR				
3	a)	Explain in detail about PPS and SPS.	L2	CO1	4 M	
	1-)	Describe GPS segments with suitable	L2	CO1	8 M	
	b)	diagrams.				
UNIT-II						
	a)	Explain the Trilateration method to	L2	CO2	6 M	
4		estimate the user position in 3D.				
	b)	Explain about GPS modernization.	L2	CO2	6 M	
		OR				
	Dra	w the functional block diagram of the GPS	L2	CO2	12 M	
5	rece	eiver. Explain the signal processing				
	fun	ctions of the GPS receiver.				
UNIT-III						
	a)	Explain the errors that are limiting the	L2	CO3	6 M	
		GPS system performance.				
6		Describe ionospheric error and also	L3	CO3	6 M	
	b)	illustrate its effect on pseudo range				
		estimation.				
OR						
7	Wri	te about the following	L3	CO3	12 M	
,	(:	i) GPS Time				

	(1	ii) Antispoofing				
	()	iii) Selective Availability				
UNIT-IV						
8	a)	Explain in detail about the GPS data	L2	CO4	6 M	
		format NGS-SP3.				
	b) Compare between various GPS data formats	Compare between various GPS data	L2	CO4	6 M	
OR						
9	Exp	plain the RINEX format of observation and	L2	CO4	12 M	
9	navigation data files.					
UNIT-V						
	a)	Describe the application of GPS in	L3	CO5	6 M	
10		precision farming.				
10	b) Discuss about the role of GI engineering applications.	Discuss about the role of GPS in Civil	L3	CO5	6 M	
		engineering applications.				
OR						
	a)	Explain how GPS is used for airborne	L3	CO5	8 M	
11		mapping, sea floor mapping.				
	b) Write short notes on application for natural resources	Write short notes on application of GPS	L4	CO5	4 M	
		for natural resources				